Picard, J.-P., Baud, G., Besse, J.-P., Chevalier, R. \& Gasperin, M. (1984). J. Less-Common Met. 96, 171-176.

Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen. Germany.
Slimane, Z. A. A., Silvestre, J.-P., Freundlich, W. \& Rimsky, A. (1982). Acta Cryst. B38, 1070-1074.

Stout, G. H. \& Jensen, H. (1968). X-ray Structure Determination. New York: Macmillan.
Todorov, T. \& Macíček, J. (1995). Acta Cryst. C51, 1034-1038.
Verhoef, L. H. W. \& Boeyens, J. C. A. (1968). Acta Cryst. B24, 1262-1266.
Walker, N. G. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1995). C51, 2542-2544

Tetrakis(N, N^{\prime}-diphenylbenzamidinato)dicopper(II) Dichloromethane Solvate

Joan Halfpenny

Department of Chemistry and Physics, Nottingham
Trent University, Clifton Lane, Nottingham NGII 8NS, England
(Received 30 January 1995; accepted 27 June 1995)

Abstract

The title compound, $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{2}\right)_{4}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, forms a cage structure with fourfold symmetry. The cage comprises two Cu atoms lying on the axis and four bridging ligand units related by the fourfold rotation. The ligand units also have approximate twofold axial symmetry. The $\mathrm{Cu} 1-\mathrm{Cu} 2$ separation of 2.460 (2) \AA is consistent with a single-bond distance. The metalligand distances, $\mathrm{Cu} 1-\mathrm{N} 1$ of 2.020 (5) and $\mathrm{Cu} 2-\mathrm{N} 2$ of 2.027 (4) \AA, are effectively equal. A cavity within the structure is occupied by disordered molecules of dichloromethane solvent.

Comment

As part of a study of amidino complexes of Cu^{1} and $\mathrm{Cu}^{\mathrm{II}}$, the title compound, (I), was prepared from anhydrous copper(II) chloride and lithio(N, N^{\prime}-diphenylbenzamidine) in monoglyme solution (Kilner \&

(I)

Pietrzykowski, 1983), and recrystallized from dichloromethane.

In the structure, the two non-equivalent Cu atoms lie on the same fourfold axis of the space group and are bridged by four ligand molecules forming a binuclear cage (Figs. 1 and 2). The ligand has approximate twofold symmetry about an axis in the $\mathrm{C} 1-\mathrm{C} 8 \cdots \mathrm{C} 11$ direction, which relates the two halves of the molecule. The point-group symmetry of the molecule is thus approximately $422\left(D_{4}\right)$, the fourfold symmetry, of course, being exact. The two Cu atoms are sufficiently close [$2.460(2) \AA$] to be regarded as single bonded and the two $\mathrm{Cu}-\mathrm{N}$ distances [2.020(5) and 2.027 (4) \AA] are very similar. In the ligand, the distances $\mathrm{Cl}-\mathrm{N} 1$ and $\mathrm{C} 1-\mathrm{N} 2$ of 1.327 (8) and 1.335 (8) \AA, respectively, are virtually identical, indicating that delocalization has occurred, which is in contrast to the significantly different mean values of 1.360 (8) and 1.302 (7) \AA found for $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}=\mathrm{N}$, respectively, in the free uncoordinated ligand dimer (Alcock, Barker \& Kilner, 1988). These workers considered there to be a marked interaction between the $\mathrm{C}-\mathrm{N}$ (amine) part of the skeleton and its associated phenyl ring, with a tendency towards planarity. This effect is absent in the present structure where the dihedral angles between the $\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$ plane and the planes of the phenyl groups at C2 and C14 are nearly equal at 63.7 (5) and $65.2(5)^{\circ}$, respectively. This feature is evidenced also by the pseudosymmetry of the ligand moiety. The increased $\mathrm{C} 1-\mathrm{C} 8$ length of 1.524 (6) \AA, compared with the mean value $1.485 \AA$ in the free ligand, is evidence of the loss of conjugation with the phenyl group in that structure in favour of delocalization

Fig. 1. The title molecule viewed along the fourfold axis, with independent atoms labelled. Atom Cu 2 is overlapped exactly by Cu .

Fig. 2. The Cu atoms and two symmetry-equivalent ligands shown with 50% probability ellipsoids.
around $\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2-\mathrm{Cu} 2$ in the present structure.

The title structure is analogous to that of tetrakis(N, N^{\prime}-diphenylbenzamidinato)dimolybdenum(II) (Cotton, Inglis, Kilner \& Webb, 1975), which has an MoMo distance of 2.090 (1) \AA. The two structures, although similar, are not isomorphous, the molybdenum structure having only twofold molecular symmetry about an axis perpendicular to the Mo-Mo direction, i.e. one of the pseudosymmetry axes in the present Cu compound.

In the structure of tetrakis ($\mu-N, N^{\prime}$-diphenylbenz-amidinato- N, N^{\prime}) dipalladium(II) ethanol solvate (Yao, He , Korp \& Bear, 1988), the molecule, although essentially D_{4} and similar to the present molecule, has no exact crystallographic symmetry elements; the PdPd distance is $2.576 \AA$. The solvent is lost in the early stages of X-ray irradiation. More recent determinations by He, Yao, Naris, Lee, Korp \& Bear (1992) of three similar structures (one cobalt and two rhodium compounds) show analogous molecules. The cobalt(II) compound forms monoclinic crystals in which the molecule has crystallographic twofold symmetry along the metalmetal axis, with a Co-Co distance of $2.302 \AA$. There is no included solvent in this structure. A rhodium compound isomorphous with the present $\mathrm{Cu}^{\mathrm{II}}$ compound but with ethanol of solvation around the fourfold alternating axis is reported to have an $\mathrm{Rh}-\mathrm{Rh}$ distance of $2.389 \AA$, and a rhodium structure with a carbonyl added axially to one Rh atom has an increased $\mathrm{Rh}-\mathrm{Rh}$ distance of $2.435 \AA$ and crystallizes as the octahydrate. It is apparent that the presence of included solvent plays a key role in determining the crystal structure adopted by these compounds and in doing so affects the precise symmetry adopted by the molecule.

Experimental

The crystals were supplied by Kilner (Kilner \& Pietrzykowski, 1983) and found to be suitable for analysis without further recrystallization.

Crystal data
$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{2}\right)_{4}\right] .2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$M_{r}=1382.33$
Tetragonal
$P 4 / n$
$a=17.601$ (11) \AA
$c=12.235(8) \AA$
$V=3790.3 \AA^{3}$
$Z=2$
$D_{x}=1.211 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe Stadi-2 two-circle diffractometer
Variable ω scans
Absorption correction: by integration from crystal shape (SHELX76; Sheldrick, 1976)
$T_{\text {min }}=0.689, T_{\text {max }}=$ 0.864

5082 measured reflections 2975 independent reflections

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 15 reflections
$\theta=5-25^{\circ}$
$\mu=0.75 \mathrm{~mm}^{-1}$
$T=288 \mathrm{~K}$
Flat tetragonal prism with
$\{001\}$ and $\{110\}$
$0.6 \times 0.6 \times 0.2 \mathrm{~mm}$
Purple

1873 observed reflections
$[I>3 \sigma(I)]$
$R_{\text {int }}=0.03$
$\theta_{\text {max }}=30^{\circ}$
$h=-13 \rightarrow 13$
$k=0 \rightarrow 20$
$l=0 \rightarrow 14$
One standard reflection per layer monitored every 20 reflections intensity decay: 5\%

Refinement

Refinement on F
$R=0.056$
$w R=0.056$
$S=1.427$
1873 reflections
192 parameters
H atoms riding with
common $U_{\text {iso }}$
Unit weights applied
$(\Delta / \sigma)_{\text {max }}=0.007$
$\Delta \rho_{\text {max }}=0.48 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e} \AA^{-3}$
Atomic scattering factors from SHELX76 (Sheldrick, 1976) for C, H, N and Cl , and Cromer \& Mann (1968) for Cu

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x		y	z eq
Cu1	$1 / 4$	$1 / 4$	$0.04687(13)$	$0.0357(5)$
Cu2	$1 / 4$	$1 / 4$	$-0.15418(12)$	$0.0331(5)$
N1	$0.2543(3)$	$0.3645(3)$	$0.0365(4)$	$0.047(5)$
N2	$0.2913(2)$	$0.3573(3)$	$-0.1441(4)$	$0.038(4)$
C1	$0.2798(3)$	$0.3980(3)$	$-0.0535(5)$	$0.038(5)$
C13	$0.2711(2)$	$0.5291(2)$	$-0.1376(3)$	$0.055(6)$
C8	$0.2976(2)$	$0.4827(2)$	$-0.0535(3)$	$0.046(5)$
C9	$0.3425(2)$	$0.5134(2)$	$0.0294(3)$	$0.054(6)$
C10	$0.3609(2)$	$0.5905(2)$	$0.0283(3)$	$0.071(8)$
C11	$0.3343(2)$	$0.6369(2)$	$-0.0559(3)$	$0.080(9)$
C12	$0.2894(2)$	$0.6062(2)$	$-0.1388(3)$	$0.070(8)$
C2	$0.2188(2)$	$0.4073(2)$	$0.1244(3)$	$0.042(6)$
C7	$0.1583(2)$	$0.4561(2)$	$0.1024(3)$	$0.053(6)$
C6	$0.1206(2)$	$0.4924(2)$	$0.1881(3)$	$0.071(8)$
C5	$0.1435(2)$	$0.4799(2)$	$0.2957(3)$	$0.084(10)$
C4	$0.2041(2)$	$0.4311(2)$	$0.3177(3)$	$0.086(10)$
C3	$0.2417(2)$	$0.3948(2)$	$0.2320(3)$	$0.066(8)$
C14	$0.3393(2)$	$0.3834(2)$	$-0.2316(3)$	$0.045(6)$
C15	$0.4140(2)$	$0.4055(2)$	$-0.2111(3)$	$0.055(6)$
C16	$0.4611(2)$	$0.4271(2)$	$-0.2974(3)$	$0.076(9)$
C17	$0.4334(2)$	$0.4267(2)$	$-0.4042(3)$	$0.084(10)$
C18	$0.3587(2)$	$0.4046(2)$	$-0.4247(3)$	$0.086(10)$

C19	$0.3116(2)$	$0.3830(2)$	$-0.3385(3)$	$0.065(8)$
C11 \dagger	$0.357(2)$	$0.670(3)$	$0.433(4)$	$0.59(12)$
C12 \dagger	$0.301(2)$	$0.623(2)$	$0.375(4)$	$0.49(8)$
C20	$0.396(2)$	$0.772(4)$	$0.485(4)$	$0.26(8)$

\dagger Occupancy factor $=0.5$.
Table 2. Selected geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Cu} 1-\mathrm{Cu} 2$	$2.460(2)$	$\mathrm{N} 1-\mathrm{Cl}$	$1.327(8)$
$\mathrm{Cu}-\mathrm{N} 1$	$2.020(5)$	$\mathrm{C} 1-\mathrm{C} 8$	$1.524(6)$
$\mathrm{Cu} 2-\mathrm{N} 2$	$2.027(4)$	$\mathrm{C} 1-\mathrm{N} 2$	$1.335(8)$
$\mathrm{C} 2-\mathrm{N} 1$	$1.453(6)$	$\mathrm{N} 2-\mathrm{C} 14$	$1.439(6)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cu} 2$	$86.43(10)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$	$121.9(4)$
$\mathrm{Cu} 1-\mathrm{Cu} 2-\mathrm{N} 2$	$86.54(9)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 8$	$120.3(5)$
$\mathrm{Cu} 2-\mathrm{N} 2-\mathrm{Cl}$	$119.7(4)$	$\mathrm{C} 8-\mathrm{Cl}-\mathrm{N} 2$	$119.6(5)$
$\mathrm{N} 2-\mathrm{Cl}-\mathrm{N} 1$	$120.1(5)$	$\mathrm{C} 14-\mathrm{N} 2-\mathrm{Cl}$	$122.4(4)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1$	$120.5(4)$	$\mathrm{C} 14-\mathrm{N} 2-\mathrm{Cu} 2$	$117.6(3)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Cul}$	$117.0(3)$		

Weissenberg photographs taken using $\mathrm{Cu} K \alpha$ radiation (λ $=1.542 \AA$) indicated Laue symmetry $4 / m$. Difficulty was experienced in measuring the crystal density by flotation; wide variations in the density of different crystals and density values changing with the time of immersion caused problems. The explanation was undoubtedly that solvent of crystallization, revealed later in the investigation to be present, was undergoing replacement in the immersion liquid. Intensity measurements were made with a two-circle diffractometer employing equi-inclination Weissenberg geometry. The angle θ^{\prime} is the projection of θ onto the equatorial plane. The crystal was set to rotate about the a axis. A separate standard was required for each layer measured, but because of the equivalence of the a and b axes in the tetragonal system, refinement of interlayer scale factors was unnecessary. Refinement was carried out with phenyl groups constrained as rigid hexagons having individual $U_{i j}$ parameters for the C atoms and H atoms at calculated sites with a common $U_{\text {iso }}$. A difference map showed a broad region of electron density around the fourfold alternating axis which was interpreted as disordered $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Data collection: Stoe Stadi-2 software. Data reduction: DATR (Small, 1977). Program(s) used to solve structure: SHELX76 (Sheldrick, 1976). Program(s) used to refine structure: SHELX76. Molecular graphics: PLUTO (Motherwell \& Clegg, 1978).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: CF1005). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Alcock, N. W., Barker, J. \& Kilner, M. (1988). Acta Cryst. C44, 712-715.
Cotton, F. A., Inglis, T., Kilner, M. \& Webb, T. R. (1975). Inorg. Chem. 14, 2023-2026.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
He, L.-P., Yao, C.-L., Naris, M., Lee, J. C., Korp, J. D. \& Bear, J. L. (1992). Inorg. Chem. 31, 620-625.

Kilner, M. \& Pietrzykowski, A. (1983). Polyhedron, 2, 1379-1388.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.

Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
Small, R. W. H. (1977). DATR. Program for Reducing Raw Stadi-2 Data to Intensities. Univ. of Lancaster, England.
Yao, C.-L., He, L.-P., Korp, J. D. \& Bear, J. L. (1988). Inorg. Chem. 27, 4389-4395.

Acta Cryst. (1995). C51, 2544-2546

Bis[(2-hydroxyethyl)dimethylammonium] Tetrakis $(\mu$-benzoato-O:O') bis[(benzoatoO)cuprate(II)]

Urho Turpeinen, Rejo HämäLäinen and
Ilpo Mutikainen
Department of Chemistry, University of Helsinki, PO Box 55, FIN-00014. Helsinki, Finland

(Received 25 April 1995; accepted 12 June 1995)

Abstract

Copper(II) benzoate reacts with 2-dimethylaminoethanol in ethanol forming a green copper(II) complex, $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{NO}\right)_{2}\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{6}\right]$. The two Cu atoms, with a $\mathrm{Cu} \cdots \mathrm{Cu}$ distance of 2.670 (2) \AA in the centrosymmetric molecule, are held together by the four carboxylate groups. Each Cu atom is bound in a square-pyramidal configuration to five carboxylate O atoms. The (2hydroxyethyl)dimethylammonium cation is hydrogen bonded to the uncoordinated O atom of the unidentate

 carboxylate group.
Comment

Monomeric, tetrameric, hexameric and nonameric complexes have been obtained from reactions between 2-dimethylaminoethanol and Cu^{11} carboxylates (Turpeinen, Hämäläinen \& Ahlgrén, 1980, 1985; Turpeinen, Hämäläinen \& Reedijk, 1987, 1988). Blue and green crystals precipitate simultaneously during the slow evaporation of an ethanol solution containing equimolar amounts of copper(II) benzoate and 2-dimethylaminoethanol. The structure of the blue complex is monomeric, the Cu atom being six-coordinate with two 2-dimethylaminoethanol and one benzoate group acting as bidentate ligands (Turpeinen, Hämäläinen \& Ahlgrén, 1985). The structure of the green compound, (I), is a variant of the classical dimeric copper(II) acetate monohydrate compound (van Niekerk \& Schoening, 1953).
The structure of (I) is composed of centrosymmetric $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{6}\right]^{2-}$ anions and (2-hydroxyethyl)dimethylammonium cations joined together by

